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A new semi-empirical absorption-correction procedure is described, applicable to X-ray diffraction data 
collected on a four-circle diffractometer from a single crystal with at least one crystallographic twofold 
rotation symmetry. The technique is basically a modification of those procedures that make use of 0-scan 
intensity variations and is primarily intended for biological macromolecular samples, although it is not 
limited to such samples. This is the first part of a two-part series and deals with the case wherein the 
symmetry axis is along the instrument q~ axis and the data are collected in the bisecting mode. 
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Introduction 

In order to determine absorpt ion-correct ion factors 
empirically,  intensities of one or more  reflections must  
be measured at many  different crystal orientations. 
This can be done with symmetry  equivalents when 
the crystal is highly symmetr ic  and/or  by means  of ~b 
scans (rotation about  the diffraction vector). When  the 
data  are collected on a four-circle diffractometer, one 
class of techniques is to represent the t ransmission 
factor as a po lynomia l  function of the various setting 
angles of the diffractometer and fit it to the intensities 
of many,  more or less r andomly  chosen, reflections 
at many  ~, angles and symmetry-equivalent  positions 
(Kopfmann  & Huber,  1968; Ka tayama,  Sakabe & 
Sakabe, 1972; Flack,  1974). These techniques require 
many  ~ scans and/or  a high degree of crystal sym- 
metry. The purpose of this paper  is to show a way of 
mak ing  empir ical  absorpt ion corrections with a 
m i n i m u m  number  of ~ scans. The technique requires 
a twofold rotat ion symmetry.  It is designed part icularly 

for protein crystal lography and makes  use of ap- 
proximat ions  that  are reasonable for such an applica- 
tion. 

The possibil i ty of using a ~ scan for the determina-  
tion of t ransmiss ion factors was first suggested by 
Furnas  (1957). If the intensity of a reflection (a ref- 
erence reflection) is measured as a function of the 
angle of rotat ion ~b a round its diffraction vector, the 
observed variat ion should give relative t ransmission 
factors for that reflection as a function of 0. In this 
paper  we consider the case where the reference re- 
flection is along the ins t rument  (p axis. The ~ rotat ion 
is then physically the same as the ~0 rotation. Furnas ' s  
suggestion was to treat the t ransmission factor for any 
reflection h to be a function of one angle only, the 
az imuthal  angle (p of the diffraction vector of the re- 
flection. Thus, the relative t ransmission factor of h 
diffracting at q~h was assumed to be the same as that  
of the reference reflection diffracting at the same q) 
angle (Fig. la). Note that in this approximat ion,  the 
incident and reflected beams of the reflection h follow 
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Fig. 1. Directions of the incident and reflected beams of a general reflection h and of the reference reflection k on the same k level. (a) Furnas's 
(1957) method. The ray directions of h are labeled 1 and 2 and the ray directions of k are labeled 3 and 4. These ray directions are related 
in pairs by a mirror plane through the vectors h and k. (b) North, Phillips & Mathews's (1968) method. The ray directions ofh are labeled 
1 and 2. The ray directions of k are 1 and 1' at one ~b angle and 2 and 2' at another. These two ~b angles are chosen strategically so that 
one of the ray directions of k at either ~b angle coincides with a ray direction of h. (c) Proposed method. The geometry is the same as in 
(b) but it is recognized that the remaining ray directions of k, labeled 1' and 2', coincide with the ray directions of h' which is related to h 
by the twofold symmetry about k. 
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a path that is entirely different from that of those of 
the reference reflection k. 

North, Phillips & Mathews (1968) improved on this 
technique basically by setting the transmission factor 
of a reflection h equal to the average of those of the 
reference reflection at two particular angles 01 and 
0z. These angles are chosen such that, at each of these 
angles, one of the two ray directions of the reference 
reflection coincides with a ray direction of h (Fig. lb). 
This procedure results in a significant improvement 
over those obtainable by Furnas's procedure but still 
contains a major unsatisfactory feature in that the 
absorption effect of the remaining two rays of the ref- 
erence reflection at these 0 angles becomes improperly 
associated with that of the reflection h. It will be shown 
in this paper that these remaining ray directions in 
fact coincide with the incident and reflected beams of 
a reflection h', which is related to h by the crystallo- 
graphic twofold rotation symmetry (Fig. lc) if (a) the 
crystal is mounted such that its crystallographic two- 
fold axis is coincident with the instrument (p axis, (b) 
the 0 scan is made about this axis and (c) the intensities 
of the general reflections h and h' are measured in the 
bisecting mode (co=0). Improvement will, therefore, 
result if the intensities of both h and h' are measured 
and the transmission factor applicable to the average  
of these two intensities is set equal to the average of 
the transmission factors of the reference reflection at 
these 0 angles. 

The relative transmission factors estimated in this 
way are applicable to all reflections in one layer but 
they must be correlated to those of other layers along 
the symmetry axis by putting them on a common 
scale. Determination of these level scale factors is a 
difficult task and, in protein crystallography, these 
are often ignored. This practice amounts to assuming 
that the transmission factor is independent of the polar 
angle (the diffractometer X angle if the 0 scan axis 
coincides with the instrument q) axis). The polar-angle 
dependency can be obtained by means of additional 
0 scans about reflections (the secondary reference re- 
flections) whose diffraction cones intersect with those 
of the primary reference reflections. It is easy to see 
that the most economical way, in terms of reducing 
the number of necessary 0 scans, is to use as the sec- 
ondary reference those reflections whose diffraction 
cones are perpendicular to those of the primary ref- 
erences. The experimental feasibility of making such 
a scan will be examined closely in this paper. 

These procedures are formally justifiable only if one 
considers the transmission factor to be separable into 
two parts, one for the incident beam and another for 
the diffracted beam. The underlying assumption, there- 
fore, is that the transmission factor is independent of 
the scattering angle 0. The 0 dependency may be ap- 
proximately corrected by the use of the spherical 
transmission factor table (Kopfmann & Huber, 1968; 
Flack, 1974). To this end it is necessary to determine 
#R, the product of the effective linear absorption coef- 

ficient and the effective radius of the sample. A prac- 
tical way of determining this value will be suggested 
and discussed. 

Overall procedure 
Our procedure is based on the assumption that the 
transmission factor of a given reflection can be 
separated into three independent parts. 

T = R( i )R(r)S(O,I . tR) .  (1) 

The factor R is assumed to depend only on the orienta- 
tion of the incident (i) or reflected (r) X-ray beam with 
respect to the sample. S is the spherical transmission 
factor at the Bragg scattering angle 0. #R is the effective 
value of the product of the linear absorption coef- 
ficient and the radius of the sphere when the sample 
is considered to be a uniformly absorbing sphere. 

The approximation (1) was proposed by Kopfmann 
& Huber (1968) who also confirmed its essential 
validity by a semi-empirical testing. (They did not 
explicitly give the value of #R but, from the dimen- 
sions of the hypothetical crystal and the value of/~ 
that they used, it may be estimated to be about 1.) 
The idea of separating T into two factors - the spheri- 
cal transmission factor and another that depends only 
on the orientation of the crystal with respect to the 
X-ray beams and which here is assumed to be 
R(i )R(r )  - was also proposed by Flack (1974). The 
separation of the orientation-dependent part into two 
factors - one for the incident beam and the other for 
the reflected beam - has also been proposed by North, 
Phillips & Mathews (1968), although these authors 
used the arithmetic mean instead of the product. 

R can be considered to be a function of two angles, 
Q and a. Q is the polar angle of the X-ray beam with 
respect to a reference axis of the crystal and a is the 
azimuthal angle. In this and the following (Lee & 
Ruble, 1977) paper, we consider crystals with at least 
one twofold rotation symmetry and choose this sym- 
metry axis as our reference axis. For concreteness we 
shall call this axis b. In this paper we consider the 
case where the crystal is mounted such that this axis 
is parallel to the instrument rp axis, in which case a 
corresponds to the instrument rp and Q corresponds 
to the instrument • angles. The general case where 
the crystal is mounted in arbitrary orientation will be 
discussed in the following paper. 

Our procedure, being a modification of that of 
North, Phillips & Mathews (1968), begins by determin- 
ing the a dependence of R(i)  and R(r)  with the 0 scans 
of 0k0 reflections. For many protein samples this 
determination must be done frequently during the 
course of data collection because the position and 
orientation of the crystal and the mother liquor may 
shift significantly relative to each other and to the 
glass capillary during the data collection. 

After the a dependence is determined at several 
layers of k, the ~ dependence is determined. This re- 
duces to the determination of level scale factors which 
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in turn is equal to the ratio of the 'true' intensities 
of different 0k0 reflections. This is done by means of 

scans of two reflections hOl and h07. In most cases, 
one determination at the end of data collection will 
suffice. 

S can be looked up from the available spherical 
transmission factor table (Bond, 1967) if/~R is known. 
#R is determined with a pencil of direct beam at the 
very end of the data collection. Detailed procedures 
for each of these determinations are described and 
discussed in the following. 

The azimuthal-angle dependence of R 

As stated earlier we restrict ourselves in this paper to 
the case where the crystallographic twofold axis is 
coincident with the instrument ~p axis and the data 
are collected in the bisecting mode (ff = 0, ~o = 0). It is 
shown in Appendix § 2 that in such a case the incident 
and reflected ray directions of a general reflection h = 
hk l  and of its twofold symmetry equivalent h '=hkl  
are coincident with those of the reflection k=0k0  at 
two particular ~k angles, ~1 and ~2. (The intensities 
of a reflection at ~k and ~k +re should be identical. 
When experimentally they are observed to be dif- 
ferent, it must mean that the diffractometer alignment 
is not quite correct, the X-ray beam is not uniform 
and/or the crystal is not exactly aligned. An average 
should be taken in such a case. In this paper, we 
assume that this has been done and that the effective 
periodicity in ff is 180°.) Since the ~b scan is done at 
Z= ___90 °, ~b and tp are the same angles and we will 
use ~p instead of ~. 

The Kopfmann & Huber (1968) approximation 
(1) can then be written for h, h', and k as follows 

Ih = R ( 1 ) R ( 2 ) S ( h ) I  ° (2) 

Iw  = R ( I ' ) R ( 2 ' ) S ( h ) I  ° (3) 

It,( ~p 1) = R(1)R( l')S(k )I ° (4) 

Ik((P2) = R ( 2 ) R ( 2 ' ) S ( k ) I  ° . (5) 

The superscripts zero in these equations denote the 
'true' intensities, i.e. the intensity that one would ob- 
serve if there were no absorption. 1,2,1', and 2' are 
the various ray directions as shown in Fig. l(c). These 
equations can then be combined to give 

[ Ihlh' -]1/2 S(k) 
I ° =  LI~(~,)I~(~2)d ~ I ° . (6) 

The two ~p angles in (6) can be expressed in terms 
of the diffractometer setting angles of h as follows 
(North, Phillips & Mathews, 1968) (Appendix § 2) 

~Pi = ~Ph + e (modulo 7z) (7) 

tan e= tan 0hlcos :th]. (8) 

In these equations (Ph, 0h, and Xh are the diffractometer 
setting angles for h or h' (either set gives the same 

result) and e ranges from 0 to 90 °. The upper and 
lower signs in (7) give ~Pl and (P2 (modulo 180°). 

The polar-angle dependence of R 
1. P r i n c i p l e  

Equation (6) contains I ° which is an unknown. If 
all reflections are confined in the kth layer, this number 
need not be known since it can be treated as a part 
of the overall scale factor. However, if the data set 
spans more than one layer, it is desirable to determine 
the relative values of these numbers (the level scale 
factors) experimentally. This can be done by means of 

scans along directions perpendicular to the sym- 
metry axis. 

Suppose that ~p scans were performed for a series 
of reflections k along the symmetry axis and that 
additional ff scans were performed for a reflection 
1 = hOl and its twofold symmetry equivalent i' = h07. We 
suppose that the Bragg angle 0 for ! and 1' is sufficiently 
small that their diffraction cones intersect with the 
diffraction cones of all k. 

Referring to Fig. 2, let 1 and i be the two ray direc- 
tions of l at a particular ff angle ~, such that they lie 
on the surface of the diffraction cones of the reflection 
k at a particular k level and of its Friedel mate I~ at 

m 

the level - k .  Let 1' and 1' be the twofold symmetry 
equivalents of 1 and 1. These will coincide with the 
ray directions of !' at a certain ~b angle ~,.. The im- 
portant feature of this construction is that the ray 
directions 1 and 1' coincide with the incident and re- 
flected beam directions of the reflection k at some ~k 

m m 

angle ~kk. Similarly the ray directions 1 and 1' coincide 
with the incident and reflected beam directions of the 
reflection k at the ¢ angle ~k~. The Kopfmann & 
Huber (1968) approximation (1) can then be written 
for k, k, 1, and i' as follows. 

k 

Fig. 2. Intersections of the diffraction cones of the secondary ref- 
erence ! and its symmetry equivalent !' with those of the primary 
reference k and its Friedel mate 1~. Note that the four ray direc- 
tions along the intersections of these diffraction cones point to- 
ward the corners of a tetrahedron of D2d symmetry. 
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(9) 

(10) 

(11) 

(12) 

I k ( ~ k )  = R(1)R(I ' )S(k)I  ° 

Ik-(OZ) = R ( i ) R ( i ' ) S ( k ) r k I  ° 

I i ($1)  = R ( 1 ) R ( i ) S ( I ) I  ° 

I , , ( $ r )  = R ( I ' ) R ( i ' ) S ( I ) I  ° . 

In (10), ru is the ratio of the 'true' intensities of the 
Friedel pair k and k: 

0 0 rk I~/I k . (13) 

This number can be set to unity unless the anomalous- 
scattering effect is unusually large. When the anoma- 
lous-scattering effect is very large, this number can 
still be estimated from the structure determined ini- 
tially assuming r = 1. 

These equations can be combined to give 

1 Ik(~/k)Ik-Optf)l 1/2 S(I) 
I°= -~k I,(~b,)I,,(~b,,) J - ~  I°" (14) 

(14) can be written for each level of k including a 
particularly chosen reference level ko. By taking a 
ratio, the 'true' intensity of k at any level can be 
written relative to that at the reference level by 

/0  [.?'kO Ik(I/lk)Ik--(~/l~-) I1 (~0 ) I , , (~ ,0 )  ~,/2 S(ko) 

I°--oo = [_ rk I,(¢/[)I,,(~ [,) I ~ o ) _ J  S(k) " 

(15) 

2. Experimental feasibility 
The above procedure requires at least two ~ scans 

perpendicular to the symmetry axis. When the sym- 
metry axis is parallel to the (p axis, these scans must 
be done at )~=0. This is not possible to do on con- 
ventional four-circle diffractometers because the re- 
quired co angle then becomes 90 ° . This difficulty can 
be overcome by deliberately changing the goniometer- 
head arc so that the reflections I and 1' diffract at X ~ 0 
when ~b=0. Since the level scale factor is the ratio 

Fig. 3. Relation among 0,,, 0m and 0~. The opening angle of the dif- 
fraction cone of I is 90°-0~ and that of k is 90°-0,,. The vector i is 
perpendicular to the vector k by definition. Note also that the 
diffraction plane of I at 0~ = 0 is perpendicular to the plane that 
contains the vectors k and !. This is because the goniometer-head 
arc movement  is assumed to be entirely within the plane of the 
x-circle. 

of the 'true' intensities of two reflections, it does not 
depend on the orientation of the crystal. Therefore, 
the scale factor determined at this new orientation 
should be applicable to the data collected at the old 
orientation. The amount of the goniometer-head arc 
that must be changed can be estimated as follows. 

Suppose that initially, when the reflection 1 dif- 
fracts at ;~ = 0 and ~ = 0, one of the goniometer-head 
arcs is in the )~ circle and that this arc is then moved 
by an angle - A .  Reflection ! will now diffract at 
X = X0 = A, ~ = 0  and all other angles unchanged. Let 
0" be the Bragg angle of the reflection k at the highest 
level m. Let 0~ be the Bragg angle for the reflection 1. 
The ~ scan around 1 needs be done only over the 
range such that its 0-scan circle crosses that of re- 
flection k at level m. Let the absolute value of ~ at 
this intersection be ~p". The minimum range of 
necessary ~ values is then from - ~ "  to ~". Referring 
to Fig. 3, we have 

sin ~" = sin 0"/cos 0 ! • (16) 

The maximum value of co for this range of ~ scan is 
obtained from (see Hamilton, 1974) 

tan (co,, - 03 = sin O"/tan Zo. (17) 

Combining (16) and (17) and recognizing that x0=A, 

tan A =sin 0,,/[cos 01 tan (co,,-01)] • (18) 

For a data set with the nominal resolution of 2.0 A, 
0m=22"71 ° with Cu Kc~ radiation. For the Syntex P1 
diffractometer, the maximum value of co attainable is 
09"=58 °. If a secondary reference reflection can be 
found at 20t< 10 °, which will usually be the case, (18) 
gives A < 16"3 °. Such a change in goniometer-head arc 
is usually possible. Even for a 1"5 A data set A < 21.2 °, 
which is still attainable if the arc was somewhat off 
from the exact zero before the change. 

Although these changes in the goniometer-head arc 
are possible, they are nonetheless large and may make 
the crystal orientation unstable. On the other hand, 
the level scale factors need not be determined often. 
In most cases one set of determinations at the end of 
data collection will suffice. In addition a 'scan' in ~p 
is not necessary - one can calculate the necessary 
values from equations given in the following section 
and measure intensities at these particular tp values 
only. 

3. Calculation of 
(15) contains one Ip angle for each of the four vectors 

k, K, 1, and !' at each level. These angles can be cal- 
culated from the diffractometer setting angles for 
these reflections at ~ = 0. Actually, there are two sets 
of ~ angles possible - one corresponding to the tetra- 
hedron of Fig. 2 and another corresponding to its 
mirror image. These two solutions are given by (see 
Appendix § 3 for derivation): 

~p=~°-T-ep (modulo re) (19) 
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0 COS Zs[ 
cos ~,p = sin Zp cos (~Ps-(Pp) (20) 

sin ~p =sin  0s/COS 0p (21) 

~ks--~/° +es (modulo zc) (22) 

cos  ~,o cos  z,, = cos (q~p- ~Ps) (23) 
sin Zs 

sin es = sin 0p/COS 0s. (24) 

In these equations, p is either k or ~, and s is either 
I or 1'. One solution is obtained by choosing upper or 
lower signs in (19) and (22) depending respectively on 
whether a positive ff rotation moves the crystal anti- 
clockwise or clockwise when the viewing direction is 
from the tip of the diffraction vector towards the 
crystal. For the Syntex P1 system, this depends on 
whether the angle Z for the reflection concerned is 
positive (upper sign) or negative (lower sign) at ~ = 0. 
The combination of signs not used in the first solution 
then gives the second solution. In practice, we prefer 
to use both solutions in order to increase the accuracy 
of the scale-factor determination. If a geometrical 
average of the two solutions is taken, ensurance of 
proper sign combination becomes unimportant (see 
the last section). When ~0 angles are calculated with 
(20) and (23), proper branches of the cosine function 
must be chosen. A criterion is that ~b ° and ~p~-~pp 
(and similarly ~b ° and qgp-q&) should belong to the 
same or different quadrant  depending on whether a 
positive ~ rotation increases or decreases the ~0 reading 
respectively. For the Syntex P i  system, these angles 
should always be in different quadrants. (21) and (24) 
reflect the fact that, when sin 0p is greater than cos 0s, 
the diffraction cones of p and s do not intersect [-see 
equation (16)]. The angle e ranges from 0 to 90 °. 
It should also be noted that the intensity at a given 
angle used here is, in general, not the same as that at 
the same value of ~, before the goniometer-head arc 
movement. This means that the intensities of the k 
reflections must be measured again at these if-angles 
even though a complete ff scan has been made around 
these reflections before the goniometer-head arc move- 
ment. 

Determination of ~tR and S 

The factor S can be looked up from the spherical- 
transmission-factor table (Bond, 1967) if #R is known. 
For most small molecule crystals, a fairly accurate 
estimate of this quantity can readily be made, How- 
ever, for protein crystals mounted in a capillary tube 
with an undetermined amount  of adhering mother 
liquor around, a good estimation of this quantity is 
difficult to make. The following procedure is sug- 
gested. 

Using a pencil X-ray beam, whose width is smaller 
than the size of the crystal, one measures the intensities 
I and Io with and without the crystal in the path of 

the beam. pR may then be estimated from 

I/Io=exp(-pR). (25) 

One should measure I with the crystal in many dif- 
ferent orientations and take the average. It is not 
clear what kind of average will be most suitable. A 
procedure consistent with the product approxima- 
tion will be to take the geometrical mean of the 
intensities, which is equivalent to taking the arithmetic 
mean of #R. 

Use of the direct beam to estimate the transmission 
factor of a crystal is, in general, inadequate for at least 
two reasons. Firstly, the size of the X-ray beam used 
for data collection is usually larger than that of the 
crystal, in which case a significant and varying pro- 
portion of the direct beam will arrive at the detector 
without passing through the absorbing matter. This 
will give rise to a varying degree of underestimation of 
the absorption factor for the sample. Use of a narrow 
beam will avoid this problem but then one must as- 
sume that the absorption effect suffered by a wide 
beam is the same as that suffered by a narrow beam. 
This is a questionable assumption. These difficulties 
would, however, not be applicable when a narrow 
beam is used only to estimate effective pR. 

A second source of potential difficulty is that the 
direct beam may pass through a portion of the ab- 
sorbing matter that the normally diffracting X-ray 
beam either does not pass through or effectively by- 
passes. One mechanism whereby this could occur can 
be seen by considering a large spherical crystal of high 
absorption coefficient. A normally diffracting beam 
effectively bypasses the portion of such crystal that 
is on the backside of the diffraction vector, making the 
transmission factor increase with increasing 0. A direct 
beam passes through all portions of the crystal and 
hence its transmission will be low and constant. If 
the shape of the crystal is not spherical, this effect will 
be even more pronounced. This feature again should 
have no effect when the direct beam is used to estimate 
effective #R instead of the transmission factors them- 
selves. There is, however, another mechanism that may 
operate when there is foreign absorbing matter around 
the crystal. When this foreign matter is on the backside 
of the diffraction vector it will not absorb the normally 
diffracting beam but the direct beam will always be 
affected. This feature will affect even the determination 
of effective/~R but the effect will tend to cancel out 
if a narrow beam is used and an average is taken over 
a wide range of crystal orientations. 

Experimental procedure 

For practical applications, it is convenient to transform 
(6) and (15) into the following forms. 

(Ihlh')l/2 (26) 
I °=  I-~(~O,)~(~O~)],~Sh 

Tk(q~i) = Pk(9,)Qk (27) 
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Pk(~i) = Ik((Pi)/Ik (28) 

ikO_(r__kk~l/2qkO ik /[ko 
Qk= S-~k \ rkoJ  qk iko SkoIO0 (29) 

VIk(~)Ik(~)Ik-(~)Ik-(~)l 1/4 (30) 
qk= L I - - ~ l ~ J  " 

In (26), Ih and Ih, are the intensities of a general re- 
flection h=hkl and its twofold symmetry equivalent 
h' measured in the usual bisecting mode and Sh is 
the spherical transmission factor that depends only 
on the value of #R and the Bragg angle Oh. q)~ and DE 
are as given by (7) and (8). In (27) and (28), i=  1 or 2 
and ik is the intensity of the reflection k = 0k0 averaged 
over all q) angles. Qk is the level scale factor and (29) 
and (30) are obtained from (15) by incorporating both 
solutions of ~ angles. The two solutions, indicated by 
superscripts 1 and 2 for each of the four reflections 
involved, are obtained by using both of the double 
signs in (19) and (22). The last factor in (29), Iko/Skolko,- 0 
is a constant and, since only relative values of Qk need 
be determined, this factor may be arbitrarily set to 
unity and dropped from the equation. 

The procedure we have set up works as follows. 
The crystal is mounted in the-capillary such that the 
crystallographic twofold axis (b axis) is parallel to the 
instrument q) axis. Intensity data are collected in the 
usual bisecting mode. Both members of the twofold- 
symmetry-related pairs are included in the data set. 
A series of reflections k = 0 k 0  is selected that is 
representative of all the k levels of the data set. Inten- 
sities from a complete 0 to 360 ° (p scan are collected 
in appropriate intervals of q~ for each of these reflec- 
tions at the beginning and at the end of the data 
collection and also during the data collection at con- 
venient intervals. After all data collection is complete, 
a couple of reflections of the type 1--hOl are selected 
that are approximately prependicular to one another 
and diffract strongly within a 20 value of about 10 °. 
For each of these reflections, the top stage and the 
arcs of the goniometer head are rotated until the plane 
that contains this reflection and the b axis coincides 
with the X circle and until the ~ scan about the re- 
flection is physically possible within the range from 
--Ore to ~,,, as calculated by (16). The orientation 
matrix of the crystal is then re-determined and the 
intensities of reflections k, 1~, l, and l' are measured 
at the set of ~ angles calculated by (19) to (24). After 
this procedure is completed for both of the l-type 
reflections, the X-ray generator setting is decreased to 
reduce the intensity of the X-ray beam, the beam 
collimator is replaced with one of narrow aperture, 
the beam stop is removed and the intensity of the direct 
beam is measured at many different crystal orienta- 
tions. Finally, the crystal is removed and the intensity 
of the direct beam is measured again. 

Absorption correction is made after background cor- 
rection (Krieger, Chambers, Christoph & Stroud, 
1974) but before decay correction. The reason that 

absorption correction should be made before decay 
correction is that the intensity of the reflections used 
to monitor the crystal decay may be affected by the 
change in the absorption characteristics of the sample 
caused by slight rotation of the crystal and movement 
of the surrounding mother liquor. 

The ~0 scan intensities of each reflection k are first 
averaged over the pairs that are 180 ° apart from one 
another in ~o and then divided by the average over 
all q0 angles. These averaged, normalized q) scan 
intensities are the Pk(q)) values of (27) and (28). The 
level scale factors Qk are computed with (29) (with 
rk and iko/SkoIO0 set to unity) and (30). We obtain 
two sets of Qk, one for each l-type reflection chosen, 
and take the geometrical average of the two. 

ik and iko used in (29) should be the average of 
intensities measured in the last complete ~ scan. This 
procedure implicitly assumes that the level scale 
factors Qk=lk/Sk I° are not affected by decay or by 
movement of the crystal and mother liquor relative to 
the glass capillary during the data collection. There 
is no reason why ik/SkI ° should be affected by decay 
as long as the ~ scan interval is chosen fairly small. 
On the other hand, it will be affected by the movement 
of the crystal and mother liquor relative to the glass 
capillary since the )~ dependence of the absorption 
may change. The level scale factors should, however, 
be rather insensitive to this movement. If large move- 
ment has occurred, there will be no way to recover 
proper scale factors and if the X dependence of the 
absorption correction is large, the data set will have 
to be re-collected. 

A table of Tk(q)) values is then set up which con- 
tains as many rows as the number of ~ scans performed 
around all k and as many columns as the number of 
q) values used in the scans. For a given general re- 
flection h, the two q~ values, q)l and q)2, are computed 
with (7) and (8). The T(q)l) and T((p2 ) values are then 
obtained by two-dimensional linear interpolation of 
the table values. The one or two rows of the table 
used in this interpolation should be those of the 
scans that had been made nearest in time to the meas- 
urement of h and bracket the k level of h. 

If the intensity of k is low, the Pk(q~) curve will be 
jagged. In such a case, the experimental values are 
fitted to a polynomial of trigonometric functions of 
q0 and the calculated smooth curve should be used 
instead of the raw experimental values. If the intensities 
of l are low, the calculated Qk values may also be 
erratic. In such a case, Qk should also be fitted to a 
polynomial of k or of trigonometric functions of 7~. 
In fact it may be desirable to fit the entire table of 
T to a polynomial of the trigonometric functions of 
(p and X. We are in the process of developing proper 
functional forms to use for this purpose. 

When the two T values are obtained either by table 
look-up or by the analytical function developed above, 
a geometrical average is taken and the intensity of 
the reflection is then divided by this number. The 
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spherical absorption correction is then applied by 
looking up the value of S from the spherical trans- 
mission factor table with the 0 value of h and the ¢tR 
computed from the intensities of the direct beam ac- 
cording to (25) and averaged over all crystal orienta- 
tions. The geometrical average over the symmetry 
equivalents h and h' is taken at a convenient later 
point during the chain of data-reduction process. 

Obviously it is desirable that this program of ab- 
sorption correction be tested on real crystals. A com- 
puter program has been written in Fortran and is 
available from our laboratory. The results of ex- 
perimental tests will be reported later. 

The authors benefited greatly from discussions with 
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Biology at Erice, Italy, April 1976. This investigation 
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by the National Cancer Institute, DHEW and by 
Grant Number BMS74-17307 from the National 
Science Foundation. 

APPENDIX 

1. A useful trigonometric formula 
In the following two sections, a trigonometric 

formula will be used to derive angular relations from 
inspection of appropriate drawings. This formula is 
described here. Let 1, 2, and 3 be any three vectors. 
Let c~1, 0~2, and ~3 be the angles between 2 and 3, 1 
and 3, and 1 and 2, respectively. Then the angle co 
between two planes - one that contains vectors 1 and 
2 and the other that contains vectors 1 and 3 - is 
given by 

COS 0~ 1 - -COS 0~ 2 COS 0~ 3 (A1) 
cos co = sin a 2 sin ~3 

Derivation of this formula is simple and need not be 
given here. One should note that, if the vectors are 
along the crystallographic axes, then a~, ~2, and 0~ 3 
are the three angles of the unit cell and co is the com- 
plement of the reciprocal angle a~. When use is made 
of this formula, the three vectors 1, 2, and 3 will be 
indicated in that order. 

2. Calculation of ~/ angles in the bisecting geometry 
Consider the following operations. First, set the dif- 

fractometer such that a general reflection h=hkl  is 
in the diffracting position in the bisecting mode. At 
this setting the diffractometer angles read cob(--Oh), Xh, 
and qgh. Let I and R denote the vectors along the inci- 
dent and reflected beams. The plane that contains 
the q) axis and the diffraction vector h at this position 
is coincident with the Z circle, is perpendicular to the 
diffraction plane of h (the plane that contains h, I, 
and R), and bisects I and R. 

Now suppose that the vectors I and R are fixed 
to the crystal and that the crystal and the two beam 

directions are rotated as one unit until the diffractom- 
eter angles read co = 0 °, Z= Xo, and q~ = ~0o. Zo and q~o 
are the Z and q~ angles where the reflection k =0k0 
diffracts at ~ = 0  °. Since the crystal is mounted such 
that the b* axis is parallel to the q) axis, Zo equals 
90 or 270 ° . 

Fig. 4 illustrates the geometries involved at this 
crystal orientation. The plane that contains the dif- 
fraction vectors h and k is still perpendicular to the 
diffraction plan of h and bisects the vectors I and R. 
The angle between the plane of the X circle and the 
plane that contains h and the q~ axis is A q~, the amount 
of q~ rotation necessary to make the reflection h dif- 
fract in the bisecting mode. Inspection of Fig. 4 gives 

0h = IZh-- rc/2l or IZh-- 3rc/2l (A2) 

01=0a (A3) 

cos 0a = cos (zr/2- Oh) cos 0h (A4) 

oh = ao + A q) (A 5) 

O" I = (7 h - -  A (7 (A 6) 

an = ah + Aa (A7) 

A q) = qgh -- Cp 0 (A 8) 

cos (re/2--0h)--cos 0h cos On (A9) 
cos A a = sin Oh sin 0a 

Ihl cos 0h= Iklb* (A10) 

cos On = IklZb*/2. (A11) 

In these equations, 0 is the angle that a given vector 
(h, I, or R) makes with the vector k, a is the azimuthal 
angle of the vector measured from a certain reference 
point such as the b'c* plane, and ao is the a angle 
of the plane of the z-circle. The sense of the a angle 
is such that a positive a rotation moves a right-handed 
screw along the positive direction of k. Aa ranges 

k, ' ,  #,-axis 

9o-.oh-,- ~ 

i 
c 

6 

Fig. 4. Or ien ta t ion  of the incident (I) and the reflected (R) beam 
directions of  a reflection h=hkl  after they are fixed to the crystal 
and rota ted with it until the diffractometer  is at the posi t ion 
where the reference reflection k = 0k0 diffracts at Ok =0 .  At this 
posi t ion Z is 90 or  270 °. The  y axis coincides with the q~ axis and 
also with the vector  k, the x axis coincides with the 7~ axis and the 
)~ circle lies on the yz plane. The  incident and reflected beams are 
on the xy plane and the detec tor  moves in the same plane. 
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from 0 to 90 °. (A9) is obtained through the applica- 
tion of (A1) on vectors k, h, and R. (All)  is obtained 
by combining (A4), (A10) and Bragg's law: 1hi = 
2 sin 0h/2. 

The ambiguities expressed in (A2) and (A5) require 
some explanation. In general, there are eight different 
diffractometer settings, at each of which the diffraction 
of a given reflection can be observed with the )~ circle 
in a position bisecting the incident and reflected beams 
(Hamilton, 1974). The data collection software of a 
particular diffractometer system chooses one of these 
settings for each reflection using certain criteria which 
may vary from system to system. The ambiguities 
indicated in (A2) and (A5) are due to these different 
possibilities of diffractometer setting and also to the 
different sign conventions used concerning the sense 
of rotation of various angles. The proper form of (A2) 
to use is the one that gives a Oh value in the range from 
0 to 90 °. In (A5), upper and lower signs should be used 
respectively, depending on whether the instrument q~ 
reading increases or decreases when the crystal is 
viewed from the positive end of the vector k towards 
the origin and rotated clockwise. Even when the correct 
sign is used, (A5) can be incorrect by 180 ° depending 
on which diffractometer setting is used but, as will be 
seen later, this ambiguity is of no practical consequence 
for the purpose of this paper. (A6) and (A7) are correct 
only for certain diffractometer settings. For other set- 
tings, the subscripts I and R must be interchanged. This 
ambiguity is again of no practical consequence. 

Consider two reflections h and h' that are related 
to one another by a twofold rotation symmetry about 
k. Clearly 0h=0h,, 0h=0h ,, and ah=O'h, +n.  (A3) and 
(A4) then show that the incident and reflected beam 
directions of these reflections, i.e. the vectors I, R, I' 
and R', all have the same 0. In fact, the X-ray beams 
of all reflections with a common k index lie on the 

p, Y 

~-oxi, l 2 

Z , "X 

Fig. 5. Geometry of the intersection of two orthogonal diffraction 
cones when p is in the diffracting position at ~p = 0. The incident 
and reflected beams are in the x y  plane. The X circle is in the 
yz  plane and bisects the incident and reflected beams. The q> 
axis lies on this plane. The angle between s and the z axis is 
Iq,°l. The vectors 1 and 2 run along the intersections of the two 
diffraction cones. The projections of these vectors on the xz  plane 
make the angles I~0gl and IqJ~l, respectively, with the x axis and 
an angle A ~Op with the vector s. 

surface of one cone whose opening angle is OR as 
given by (All). This is of course a well-known fact 
from the equi-inclination Weissenberg geometry. In 
addition, (A6) and (A7) show that the a angles of I' 
and R' are 180 ° apart from those of I and R. The four 
vectors I, R, I', and R' therefore conform to the two- 
fold symmetry as do h and h'. This is a characteristic 
property that one obtains when the crystal is mounted 
such that the symmetry axis is parallel to the q~ axis 
and the data are collected in the bisecting mode. If 
either of these conditions is not met, this desirable 
property does not obtain (see the accompanying paper). 

These properties - that the four ray directions I, 
R, I' and R' lie on the surface of the diffraction cone 
of k and that they conform to the twofold rotation 
symmetry about k - clearly ensure that it is always 
possible to choose two q) angles at which the incident 
and reflected beam directions of k coincide with these 
four beam directions. Inspection of Fig. 4 shows that 
these angles are given by 

q~=qOh+_Aa+rc/2 (modulo rt). (A12) 

This equation can be converted to (7) and (8) of the 
main text by a somewhat lengthy but straightforward 
mathematical transformation using equations (A2), 
(A4), and (A9) and introducing a new variable 5= 
re/2 - A a. 

3. Intersection of two mutually orthogonal diffi'action 
cones 
Let p and s be any mutually orthogonal pair of re- 

flections, neither of which is necessarily on the q> axis. 
Turn the diffractometer until one of them, say p, is 
in the diffracting position at 0 = 0. Fig. 5 shows the 
geometry at this crystal orientation. The X circle lies 
on the yz plane. The q> axis also lies on this plane. 
The )~ axis is along the x axis and the incident and 
reflected beams lie on the xy plane. Assuming that 
the two diffraction cones meet, the intersections define 
the two vectors 1 and 2. 

Now fix the coordinate system and the incident and 
reflected X-ray beams in space and turn the diffractom- 
eter to rotate the crystal about the vector p. This is 
the 0 rotation about p. Let ~ and ~ be the two 
angles when the vectors I and 2, respectively, are along 
the incident or reflected beam. These are the positions 
when the vector 1 or 2 is in the xy plane. Let ~o be 
the ~ angle when the vector s is coincident with the 
z ax is .  

These 0 angles can be calculated from the dif- 
fractometer setting angles of p and s as follows. Let 
0, ~0, and X with subscripts p or s be the Bragg diffrac- 
tion angle and the diffractometer setting angles when 
p or s diffracts in the bisecting mode. One notes that 
the angle between the q> axis and the vector p is 
190 ° +)~p[ or 190 °-)~pl depending on the sign conven- 
tion of the sense of rotation of Z and on the position 
of the bisecting mode (see Appendix 2). We shall call 
this angle Z'p. Similarly the angle between the q> axis 
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and the vector s will be called gs and is equal to 
190 ° -t- Z~I or 190 ° -X~[. One can then write the following 
equations directly by an inspection of Fig. 5. 

Op=0  ° + zc/2_+ AOp (modulo re) (A13) 

cos (~0~- ~0p)= cos ~z/2- cos )~, cos )~s (A14) 
sin X'p sin )£ 

cos q/o= cos g ; - c o s  g'p cos re/2 
sin )~, sin re/2 (A 15) 

cos (rc/2-0s)=sin (rc/2-0p) cos A0p. (A16) 

that q ~ -  ~op and ~o belong to the same or different 
quadrants depending respectively on whether the 
senses of the q~ and ~ rotations are the same or dif- 
ferent. 

This set of equations can be written for each of the 
four vectors k, ~, 1 and 1'. These give all the 0 angles 
necessary for all eight vectors of intersection, from 
which proper sets of four vectors must be selected ac- 
cording to Fig. 2. These considerations give (19) to 
(24) and the rules for selecting proper signs and 
branches of the cosine function as stated with these 
equations in the main text. 

In (A13), the double sign is for i=  1 or 2. (A14) and 
(A15) are obtained by application of (A1) on vectors 
~0 axis, p and s and on vectors p, q~ axis and s respec- 
tively. With the introduction of a new variable ep= 
re/2-A 0p, these equations can be rewritten as 

~/p=~tp0___~p (modulo zc) (A17) 

cos (q~s-~Pp)= _ sin Zp sin Zs (A 18) 
COS Zp COS Zs 

cos ~o=  + sin Z ~  _ _ cos. XSco s (%-~0p) (A19) 
cos Zp sm Zp 

sin 0~ 
sin ep -  . (A20) 

cos 0p 

It can be shown by considering all possible sign con- 
ventions and diffractometer settings that the ambi- 
guity in sign in (A19) should be removed by requiring 
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This is the second part of a two-part series. The first part described the technique in the case when the 
symmetry axis is coincident with the instrument ~p axis. This paper describes the procedure to follow when 
the orientation of the symmetry axis is arbitrary. 

Introduction 

In the previous paper (Lee & Ruble, 1977), a pro- 
cedure for the semi-empirical absorption correction 
has been presented for the case where a crystallo- 
graphic twofold axis is coincident with the instrument 
~p axis. However, there are cases where aligning a sym- 
metry axis along the ~p axis presents serious practical 
problems. This will be the case if the crystal is so ill- 

formed that the crystallographic symmetry axis is im- 
possible to identify under microscopic examination. 
In the case of protein crystals, which have to be 
mounted in capillary tubes, the difficulty also arises 
if the shape of the crystal is very anisotropic and also 
such that the symmetry axis runs along the short 
dimension of the crystal. The crystal, in this case, will 
tend to orient itself such that its long dimension is 
parallel to the capillary axis, making it difficult to 


